# The Incidence of Capital Income Taxes in a Life Cycle Economy with Firm Heterogeneity

Chung Tran Australian National University Australian National University

Sebastian Wende

Osaka University - June 2020

#### Capital income taxation

- 1. Firm: Corporate income tax
  - Corporate income: total revenue expenses and operating costs
- 2. Household: Personal income tax
  - Personal income: labor, capital and other incomes
    - ► Capital incomes: dividends, capital gains and interests

#### Capital tax reforms in the US

- ► Before 2003
  - Corporate income tax: 35%
  - Capital gains and dividend tax rates: 25%
- 2003: Job and Growth Tax Relief Reconciliation Act 2003: Bush's tax cuts
  - Corporate tax: Kept at 35%
  - Capital gains and dividend tax rates: Down to 15% (temporary)
- ▶ 2018: The US Tax Cuts and Jobs Act 2017: Trump's tax cuts
  - Corporate income tax: Down to 21%
  - Capital gains and dividend tax rates: 15%

#### The incidence of capital income taxes

- ► How is the burden of capital income taxation allocated among different households and generations?
  - Corporate income tax
  - Dividend tax
  - Capital gains tax
- How would a tax reform proposal affect each household group?
  - Efficiency vs. equity

#### This paper

- Provides a tax incidence analysis
- Using a dynamic general equilibrium model
- Key model features:
  - Heterogeneous households: Life cycle structure and productivity differences
  - ▶ Heterogeneous firms: Differences in real and financial positions
  - Dynamic general equilibrium

## Excess burden or deadweight loss of taxation (DWL)



Figure: Measuring excess burden: Harberger's triangle

# Harberger's triangle and marginal excess burden (MEB)



Figure: Marginal excess burden of a tax increases

► MEB =  $\Delta$  welfare /  $\Delta$  revenue= (C+D+E)/(A+B-D).

# A marginal excess burden (MEB) analysis in general equilibrium

- Measuring welfare costs
  - MEB=(Marginal change in welfare)/(Marginal change in revenue)
- quantify the incidence of three capital taxes
  - Corporate income tax (CIT), dividend tax (DT) and capital gain tax (CGT)

#### Main results

- The burden of the three capital taxes are large and significantly different.
  - ▶ The marginal excess burden (MEB)
- ► The burden of each capital tax is allocated unevenly among income groups and generations.
- ► The modeling features matter for the quantitative results
  - ► Firm heterogeneity
  - Life-cycle structure
  - Market incompleteness
- Cutting corporate tax leads to efficiency gains,
  - but opposing welfare effects across households and generations

# Marginal excess burden (MEB): Efficiency effect



Table: Marginal excess burden of raising 1 dollar revenue in NPV terms

- CIT: Corporate income tax;
- DT: Dividend tax;
- CGT: Capital gain tax;
- ► LIT: Labor income tax

#### Distribution of MEB: Distributive effect

|          |              | CIT    | DT              | CGT     | DT&CGT  | LIT     |
|----------|--------------|--------|-----------------|---------|---------|---------|
|          | Aggregate    | \$0.67 | \$1.56          | -\$0.28 | \$0.50  | \$0.22  |
|          | Retired      | \$0.07 | \$0.03          | \$0.06  | \$0.04  | -\$0.81 |
| -        | Working      | \$0.77 | \$1.55          | -\$0.07 | \$0.61  | \$0.14  |
|          | Future       | \$0.70 | <b>\</b> \$1.96 | -\$0.59 | \$0.50  | \$0.58  |
|          | Low skill    | \$0.03 | \$0.55          | -\$0.53 | -\$0.07 | -\$0.26 |
| <u>{</u> | Medium skill | \$0.52 | \$1.30          | -\$0.32 | \$0.37  | \$0.08  |
|          | High skill   | \$1.35 | \$2.67          | -\$0.06 | \$1.10  | \$0.77  |

Table: MEB by skill and age group

## Model features and marginal excess burden (MEB)

| Model        | CIT    | DT     | CGT     | DT&CGT | LIT    |
|--------------|--------|--------|---------|--------|--------|
| Benchmark    | \$0.67 | \$1.56 | -\$0.28 | \$0.50 | \$0.22 |
| Neoclassical | (10.79 | \$0.80 | \$0.77  | \$0.79 | \$0.26 |
|              |        |        |         |        |        |

Table: MEB of raising 1 dollar revenue in NPV terms in different models

- Benchmark model: Heterogeneous firms, life-cycle households, financing constraint, and DRS technology
- Neoclassical model: Representative firm, representative household, and CRS technology

#### Related literature

- ► Tax incidence:
  - Classic work: Harberger (1962) and Fullerton and Metcalf (2002) for a survey
  - Recent development: Sachs, Tsyvinski and Werquin (2019)
    Saez and Zucman (2019) and Tran and Wende (2017)
- ► Capital income taxation:
  - ► Zero capital tax: Judd (1985), Chamley (1986)
  - Positive capital tax: Hubbard and Judd (1986), Erosa and Gervais (2002), Aiyagari (1995), Imrohoroglu (1998) and Conesa, Krueger and Kitao (2009).
  - Capital taxes, investment and aggregates
  - Corporate income taxes: McGrattan and Prescott (2005), Santoro and Wei (2011) and Anagnostopoulos, Carceles-Poveda and Lin (2012), Anagnostopoulos,
    - Carceles-Poveda and Lin (2012)
    - Dividend and capital gains taxes: Gourio and Miao (2010) and Gourio and Miao (2011)
    - Firm heterogeneity and corporate taxes: Anagnostopoulos, Atesagaoglu and Carceles-Poveda (2015) and Wills and Camilo

# Model

#### The model: Overview



#### An incomplete market model with heterogeneous agents

- Dynamic stochastic general equilibrium (DSGE) model
- Overlapping generations of life-cycle households as in Auerbach and Kotlikoff (1987) with skill heterogeneity and borrowing constraints.
- Heterogeneous firms as in Gourio and Miao (2010) with idiosyncratic productivity shocks, financing constraints and financial policy
- ► Calibrated to the US data in early 2010s

#### Households I

- ▶ Demographics: 20 to 100 years
- Preferences: Households value consumption and leisure and maximize the discounted lifetime utility
- ► Endowments: Newborns with different skills that define the life-cycle profiles of labor efficiency units
- A household begins with zero assets and chooses consumption, labor supply and asset holdings to maximise its utility over its lifetime.
- Saving technology: equity,  $\theta_{i,j,t}$ , and bonds,  $B_{i,j,t}$ , but can not short sell equity or debt  $\theta_{t,j,i} \geq 0$ ,  $B_{t,j,i} \geq 0$ .
  - Income sources: labor income, dividends,  $d_t(\mu_t)$ , capital gains, interest payments, accidental bequests  $\overrightarrow{BQ_{t,i}}$ , and government transfers  $T_{t,j,i}$ .

#### Households II

- Taxes: Consumption tax, labor income tax, and taxes on dividends, capital gains and interest income with rates  $\tau^l$ ,  $\tau^g$  and  $\tau^i$  respectively.
- ► The household problem is given by

$$U = \sum_{j=20}^{100} S_j \beta^j \frac{\left(c_j^{\gamma} l_j^{1-\gamma}\right)^{1-\sigma}}{1-\sigma}$$

subject to 
$$(1+\tau^{c})C_{j} + \int p_{t}\theta_{j+1}d\mu_{t} + B_{j+1}$$

$$= (1-\tau^{l})W_{t}(1-l_{t})e_{j} + (1+(1-\tau^{i})r_{t}))B_{j} + T_{j} + BQ_{j}$$

$$+ \int \left(p_{t}^{0} + (1-\tau^{d})\theta_{t} - \tau^{g}\left(p_{t}^{0} - p_{t-1}\right)\right)\theta_{j}d\mu_{t-1}.$$

#### Simplified household problem I

► No arbitrage condition implies

$$(1-\tau^{i})r_{t+1} = \frac{E_{t}\left[(1-\tau^{d})d_{t+1} + (1-\tau^{g})(p_{t+1}^{0}-p_{t})\right]}{p_{t}}$$

Assuming that households hold similar an equal share of each firm, so that we can express asset portfolios in terms of the representative asset

$$A_{t+1,j+1,i} = \left( \int \underbrace{\rho_t \theta_{t+1,j+1,i} d\mu_t + B_{t+1}} \right)$$

and the return on the asset,  $r_t^a$ , is given by

$$r_t^a = \frac{(1-\tau^i)r_tB_t + \int \left[ (1-\tau^d)d_t + (1-\tau^g)(p_t - p_{t-1}) \right]d\mu_{t-1}}{B_t + \int p_{t-1}d\mu_{t-1}}.$$

The household's budget constraint can be re-written as

$$(1 - \tau^{c}) C_{t,j,i} + A_{t+1,j+1,i} = (1 - \tau^{l}) W_{t} (1 - l_{t,j,i}) e_{j,i} + (1 + r_{t}^{a}) A_{t,j,i} + T_{t,j,i} + BQ_{t,i}.$$

## Simplified household problem II

▶ The household's dynamic programming problem is given by

$$V_{j}(A_{t,j,i}) = \max_{\{C_{t,j,i}, I_{t,j,i}, A_{t+1,j+1,i}\}} \left\{ u\left(C_{t,j,i}, I_{t,j,i}\right) + \hat{\beta}sp_{j+1}V_{j+1}\left(A_{t+1,j+1,i}\right) \right\}$$

subject to the household's budget constraint, the credit constraint,  $A_{t+1,j+1,i} \geq 0$ , and the non-negativity of leisure and consumption  $C_{t,j,i} > 0$  and  $1 \geq l_{t,j,i} > 0$ .

## Timing of household decision



#### **Firms**

- ► The production sector consists of a continuum of ex-ante identical firms exposed idiosyncratic productivity shocks.
- The firms own capital and chooses investment, dividends, equity and labor demand to maximize their cum dividend equity price.
- ► Firms differ ex-post in terms of the histories of productivity shocks and capital stock.

#### **Technology**

▶ Production function

$$F(k, n; z) = \sum_{k} \alpha_k \underline{n}^{\alpha_n}$$

where  $\alpha_k + \alpha_I < 1$  (DRS)

Productivity evolves according to

$$\ln z_t = \rho \ln z_{t-1} + \epsilon_t$$

where  $\epsilon_t$  IID  $\mathcal{N}(\mathbf{0},\sigma^2)$ 

Capital accumulation

$$k_t = (1 - \delta)k_{t-1} + i_t$$

Investment cost

$$C(i) = i + \frac{\psi i^2}{2k}$$

► Earnings after wages

$$(\pi) = \underline{zk^{\alpha_k}n^{\alpha_n}} - \underline{wn}$$

# Corporate finance I



- ▶ The firm is owned by equity holders who receive a return on equity by receiving dividends  $d_t$ , and also capital gains on changes in the equity price.
- Investment finance: Internal finance from earnings after wages and taxes and external finance by issuing new equity  $(s_t)$ .
- ► Non-negative dividends constraint

$$d_t \geq 0$$
.

Equity buy-backs constraint

$$s_t \geq -\bar{s}$$

▶ No dividend payout unless the firm is fully utilising its ability to pay out returns through the buy-backs giving the constraint

$$d_t(s_t+\bar{s})=0.$$

#### Corporate finance II

► The value of a firm's equity after issuance is given by the pre-issuance value plus the value of issuance

$$p_t = s_t + p_t^0.$$

- The firm pays corporate income tax on its income which is revenue minus wages  $(\tau^k)(zk^{\alpha_k}n^{\alpha_n}-w_tn_t)$ .
- The firm can also deduct from its taxable income a fraction of its investment and capital depreciation.
- Using the households' first order condition for equity yields

$$(1-\tau^{i})r_{t+1} = \frac{E_{t}\left[(1-\tau^{d})d_{t+1} - (1-\tau^{g})s_{t+1} + (1-\tau^{g})(p_{t+1}-p_{t})\right]}{p_{t}}.$$

#### Corporate finance III

► The no arbitrage condition for the fair price of equity is given by

$$\rho_t = \frac{E_t \left[ (1 - \tau^d) / (1 - \tau^g) d_{t+1} + p_{t+1} - s_{t+1} \right]}{1 + r_{t+1}^i / (1 - \tau^g)}.$$

Here  $r_t^i = (1 - \tau^i)r_t$  is the after tax interest rate.

# Timing of firm decision



#### Firm problem I

► Each firm maximises its cum dividend value which is defined as

$$V_t = \frac{1 - \tau^d}{1 - \tau^g} d_t - s_t + p_t$$

▶ The firms problem can be written as

$$V_{t}(k_{t},z_{t}) = \max_{d_{t},s_{t},i_{t},n_{t},k_{t+1}} \frac{1-\tau^{d}}{1-\tau^{g}} d_{t} - s_{t} + \frac{E_{t}\left[V_{t+1}(k_{t+1},z_{t+1})\right]}{1+r_{t+1}^{i}/(1-\tau^{g})}$$
s.t.

$$i_t + \frac{\psi i_t^2}{2k_t} + d_t = (1 - \tau^k) (z_t k_t^{\alpha_k} n_t^{\alpha_n} - w_t n_t) + \tau^k \delta k_t + s_t,$$

$$k_{t+1} = (1 - \delta)k_t + i_t$$

$$d_t > 0$$
 ,  $s_t > -\bar{s}$  ,  $d_t (s_t + \bar{s}) = 0$ .

#### Government

► The government collects taxes to finance government consumption and transfers. The government budget is given by

$$\label{eq:Btotal_state} \textit{B}_{t+1} = \textit{TAX}_t - \textit{G}_t - \textit{T}_t - \left(1 + \textit{r}_t\right)\textit{B}_t.$$

▶  $B_{t+1}$  is new government debt issued at time t and  $B_t$  outstanding government debt issued at time t-1.

# Calibration

#### Benchmark calibration

- ► To match the US economy in early 2010s
- ► Macroeconomic aggregate data
- Firm level data from COMPUSTAT

#### Calibration value

|                               | Parameter      | Value |
|-------------------------------|----------------|-------|
| Exponent on capital           | $\alpha_k$     | 0.311 |
| Exponent on labor             | $\alpha_I$     | 0.650 |
| Shock persistence             | ρ              | 0.767 |
| Shock standard deviation      | $\sigma$       | 0.211 |
| Depreciation rate             | δ              | 0.095 |
| Adjustment cost               | $\psi$         | 0.890 |
| Equity buy-back constraint    | Ī5             | 0.085 |
| Discount factor               | $-\bar{\beta}$ | 0.983 |
| Consumption share             | γ              | 0.25  |
| Inter-temporal elasticity     | $1/\sigma$     | 0.4   |
| Corporate income tax          | $\tau^{k}$     | 0.340 |
| Dividend tax                  | $	au^d$        | 0.200 |
| Capital gains tax             | $	au^{g}$      | 0.200 |
| Interest income tax           | $	au^i$        | 0.250 |
| labor income tax              | $	au^n$        | 0.240 |
| Consumption tax               | $	au^n$        | 0.025 |
| Deductibility of depreciation | $\chi^\delta$  | 1.00  |
| Deductibility of investment   | $\chi'$        | 0.00  |

Table: Model Calibrations

# Household: Labor productivity



# Firm: Productivity

| z =   | 0.36 | 0.47 | 0.59 | 0.73 | 0.90 | 1.11 | 1.36 | 1.69 | 2.13 | 2.79], |
|-------|------|------|------|------|------|------|------|------|------|--------|
| •.    | 0.31 | 0.46 | 0.20 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   |
|       | 0.06 | 0.33 | 0.40 | 0.17 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   |
|       | 0.01 | 0.11 | 0.35 | 0.36 | 0.14 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00   |
|       | 0.00 | 0.02 | 0.17 | 0.37 | 0.32 | 0.11 | 0.01 | 0.00 | 0.00 | 0.00   |
|       | 0.00 | 0.00 | 0.04 | 0.22 | 0.39 | 0.27 | 0.07 | 0.01 | 0.00 | 0.00   |
| $\pi$ | 0.00 | 0.00 | 0.01 | 0.07 | 0.27 | 0.39 | 0.22 | 0.04 | 0.00 | 0.00   |
|       | 0.00 | 0.00 | 0.00 | 0.01 | 0.11 | 0.32 | 0.37 | 0.17 | 0.02 | 0.00   |
|       | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.14 | 0.36 | 0.35 | 0.11 | 0.01   |
|       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.17 | 0.40 | 0.33 | 0.06   |
|       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.20 | 0.46 | 0.31   |
|       |      |      |      |      |      |      |      |      |      |        |

Table: Productivity levels and transition matrix

Firm: Equity issuance or dividend distribution Mpx: high. 0.4 Dividends minus issuance 0.3 PH. Finanava 0.1 -0.1 -0.2 2 3 Capital

# Firm: Net investment by capital level



# Marginal excess burden analysis

### Experiments: Marginal excess burden analysis

- Raise 1 dollar of net tax revenue (in NPV terms) in each future period
- Compute the welfare costs of such tax increase
  - Using equivalent variation (EV) as a measure of the welfare costs
- Compute marginal excess burden (MEB) = (Marginal change in welfare)/(Marginal change in tax revenue)
- Taxes: Corporate income tax (CIT), dividend tax (DT), capital gains tax (CGT) and labor income tax (LIT)

### Harberger's triangle and marginal excess burden (MEB)



Figure: Marginal excess burden of a tax increases

► MEB =  $\Delta$  welfare /  $\Delta$  revenue= (C+D+E)/(A+B-D).

### Efficiency effect: Marginal excess burden (MEB)



Table: Marginal excess burden of raising I dollar revenue in NPV terms

CIT: Corporate income tax;

DT: Dividend tax;

CGT: Capital gain tax;

► LIT: Labor income tax



Corporate income tax (CIT)

### Corporate tax increase

Corporate income tax (CIT): Output



# Corporate income tax (CIT): Capital by level of firm productivity



### Corporate income tax (CIT): Labor income



### Corporate income tax (CIT): Assets



### Corporate income tax (CIT): Revenue



### Corporate income tax (CIT): Welfare change



Capital gains tax

## Capital gains tax increase



### Dividends plus buybacks by capital level



### Capital gains tax: Output



$$\mathit{TFP} = Y/(K^{\alpha_K}N^{\alpha_N})$$

### Capital gains tax: Capital by level of firm productivity



### Capital gains tax: Welfare change



Dividend and capital gains taxes

Dividend and capital gains tax increase

### Dividend and capital gains taxes: Output



### Dividend and capital gains taxes: Capital by productivity



### Distributive effect: MEB by age and skill

|              | CIT    | DT     | CGT     | DT&CGT  | LIT     |
|--------------|--------|--------|---------|---------|---------|
| Aggregate    | \$0.67 | \$1.56 | -\$0.28 | \$0.50  | \$0.22  |
| Retired      | \$0.07 | \$0.03 | \$0.06  | \$0.04  | -\$0.81 |
| Working      | \$0.77 | \$1.55 | -\$0.07 | \$0.61  | \$0.14  |
| Future       | \$0.70 | \$1.96 | -\$0.59 | \$0.50  | \$0.58  |
| Low skill    | \$0.03 | \$0.55 | -\$0.53 | -\$0.07 | -\$0.26 |
| Medium skill | \$0.52 | \$1.30 | -\$0.32 | \$0.37  | \$0.08  |
| High skill   | \$1.35 | \$2.67 | -\$0.06 | \$1.10  | \$0.77  |

Table: MEB by skill and age group

## Model features and MEB

### Model features

- Our benchmark model
  - Heterogeneous firms w/ different productivity shocks and investment finance regimes
  - Heterogeneous lifecycle households w/ different ages and skills
  - DRS technology
- How important are these features?
- Considering a range of different models:
  - 1. Model A: Rep. firm, lifecycle households, internal finance, DRS
  - Model B: Rep. firm, lifecycle households, external finance, DRS
  - 3. Model C: Heterogeneous firms, rep. household, DRS
  - 4. Model D: Rep. firm, rep. household, external finance, DRS
  - Model E: Rep. firm, rep. household, CRS technology (Neoclassical model)

### Marginal excess burden: Model comparison

|                                  |               | misallocation |         |        |        |
|----------------------------------|---------------|---------------|---------|--------|--------|
|                                  | b             |               |         |        | 1      |
|                                  |               | }             |         |        | T ~ ~  |
| Model                            | CIT           | DT            | CGT     | D&CGT  | LIT    |
| 0. Bench. Model                  | \$0.67        | \$1.56        | -\$0.28 | \$0.50 | \$0.22 |
| 1. Mod. A: H HH, R firm, IF      | \$0.54        | \$0.13        | \$1.43  | \$0.52 | \$0.24 |
| 2. Mod. B: H HH, R firm, EF      | \$0.54        | \$0.66        | \$0.22  | \$0.52 | \$0.24 |
| 3. Mod. C: R HH, H firm          | \$0.71        | \$1.95        | -\$0.36 | \$0.52 | \$0.22 |
| 4. Mod. D: R HH, R Firm, IF      | \$0.58        | \$0.75        | \$1.21  | \$0.48 | \$0.16 |
| 5. Mod. E: R HH, R Firm, EF, CRS | \$0.79        | \$0.80        | \$0.77  | \$0.79 | \$0.26 |
| T-11- NA                         | $\overline{}$ |               |         |        |        |

Table: Marginal excess burden

### Efficiency and distributive effects of taxes: Model features

- Household heterogeneity introduces distributional consequences
  - ► Model 0 and Models A and B with heterogeneous households
- ► Firm heterogeneity introduces a new channel of efficiency effects
  - Misallocation channel
  - ► Model 0 and Model C with heterogeneous firms

### Firm heterogeneity and misallocation channel

- Productivity and capital levels
  - Technology shocks
  - Investment and capital accumulation
  - Age of firms
- Investment finance
  - Internal financing through retained profits
  - External financing through equity issuance
- ▶ Different capital taxes affect firms differently.
- Tax distortions and financial constraints lead to inefficient allocation of capital across firms.

# Tax reforms

### Corporate tax reforms

- Principle: Move away from taxes w/ high MEB
- Action: Cut taxes on corporate income (Firm): CIT cuts
- Shift tax burden to personal income (Household)
  - 1. Dividend tax
  - 2. Dividend and capital gains taxes
  - 3. Labor income tax

Outcome: Efficiency and distributive effects

### Reform 1: The CIT cuts financed by dividend tax

| CIT rate (%)                      | 70 | <del>7</del> 8 | 16    | 24    | 32             |
|-----------------------------------|----|----------------|-------|-------|----------------|
| Output change (%)                 | -  | <i>'</i> -     | 0.5   | -0.3  | -0.4           |
| Welfare change (%)                | -  | -              | -1.98 | -1.42 | -0.35          |
| Retired welfare $\Delta$ ( $\%$ ) |    |                | -5.46 | -2.86 | -0.26          |
| Working welfare $\Delta$ (%)      | -  | -              | -2.49 | -1.6  | -0.33          |
| Future welfare $\Delta$ (%)       |    | -              | -0.3  | -0.76 | -0.39          |
| Low skill $\Delta$ (%)            |    | 7              | -1.6  | -1.23 | -0.34          |
| Medium skill $\Delta$ (%)         | -  | -              | -1.9  | -1.39 | -0.35          |
| High Skill $\Delta$ (%)           | -  | - (            | -2.15 | -1.51 | -0.36          |
| Population support (%)            |    |                |       | 0 _   | <del>0</del> - |
| $\tau^d$ (%)                      | -  | -              | 73.8  | 53.9  | 26.3           |
|                                   | -  | -              | Ū     | 53.9  | 26.3           |

Table: The welfare effects of the CIT cuts financed by dividend tax.

Reform 2: The CIT cuts financed by dividend and capital gains taxes

|                              | Jun 1 |       |       |              | $\neg \emptyset$ |
|------------------------------|-------|-------|-------|--------------|------------------|
|                              | ملے   |       |       | ~B           |                  |
| CIT rate (%)                 | 0     | 8     | 16    | 24           | 32               |
| Output change (%)            | (0.9) | 0.8   | 0.6   | 0.4          | 0.1              |
| Welfare change (%)           | 0.22  | 0.29  | 0.29  | 0.22         | 0.06             |
| Retired welfare $\Delta$ (%) | -0.34 | -0.19 | -0.07 |              | 0.01             |
| Working welfare $\Delta$ (%) | 0.16  | 0.23  | 0.24  | 0.19         | 0.05             |
| Future welfare $\Delta$ (%)  | 0.32  | 0.38  | 0.37  | 0.27         | 0.07             |
| Low skill $\Delta$ (%)       | 0.29  | 0.33  | 0.31  | 0.23         | 0.06             |
| Medium skill Δ (%)           | 0.24  | 0.29  | 0.29  | 0.22         | 0.06             |
| High Skill Δ (%)             | 0.19  | 0.27  | 0.28  | 0.21         | 0.06             |
| Population support (%)       | (34)  | 45    | 55    | <u>4.</u> 84 | -100             |
| $\tau^d$ , $\tau^g$ (%)      | 53.4  | 47.8  | 41.1  | 33           | 22.9             |

Table: Impact of replacing corporate tax with dividend and capital gains tax.

### Reform 3: The CIT cuts financed by labor income tax

| CIT (%)                      | 0           | 8     | 16    | 24       | 32    |
|------------------------------|-------------|-------|-------|----------|-------|
| Output change (%)            | 2.2         | 1.9   | 1.5   | 0.9      | 0.2   |
| Welfare change (%)           | 0.82        | 0.72  | 0.57  | 0.36     | 0.08  |
| Retired welfare $\Delta$ (%) | 10.35       | 8.1   | 5.74  | 3.26     | 0.67  |
| Working welfare $\Delta$ (%) | 1.39        | 1.2   | 0.94  | 0.59     | 0.13  |
| Future welfare $\Delta$ (%)  | -2.97       | -2.03 | -1.22 | -0.56    | -0.09 |
| Low skill $\Delta$ (%)       | -0.13       | 0     | 0.08  | 0.1      | 0.03  |
| Medium skill Δ (%)           | 0.64        | 0.58  | 0.47  | 0.31     | 0.07  |
| High Skill Δ (%)             | 1.25        | 1.04  | 0.78  | 0.48     | 0.11  |
| Population support (%)       | <u>8</u> 1_ | 81    | 81    | <u> </u> | 82    |
| $\tau^n$ (%)                 | 27.3        | 25.3  | 23.3  | 21.1     | 18.9  |

Table: The welfare effects of the corporate tax cuts financed by labor

income tax.



### Conclusion

- ► The welfare costs of capital taxes are relatively large and allocated unevenly to households and generations
- The CIT cuts improve efficiency, but lead to different welfare outcomes.
- ► The important features are
  - Firm heterogeneity: Allocative inefficiency
  - Lifecycle structure: Saving and capital accumulation
  - Financing constraints: Investment and capital accumulation

### Bibliography I

- Aiyagari, Rao S. 1995. "Optimal Capital Income Taxation with Incomplete Markets, Borrowing Constraints, and Constant Discounting." *Journal of Political Economy* 103:1158–1175.
- Anagnostopoulos, Alexis, Eva Carceles-Poveda and Danmo Lin. 2012. "Dividend and capital gains taxation under incomplete markets." *Journal of Monetary Economics* 59(7):599–611.
- Anagnostopoulos, Alexis, Orhan Erem Atesagaoglu and Eva Carceles-Poveda. 2015. "On the Double Taxation of Corporate Profits." Woprking paper .

#### **URL:**

http://www.aueb.gr/conferences/Crete 2014/papers/Anagnostopoulos.

- Auerbach, Alan J. and Laurence J. Kotlikoff. 1987. *Dynamic Fiscal Policy*. Cambridge University Press.
- Chamley, Christophe. 1986. "Optimal Taxation of capital Income in General Equilibrium with Infinite Lives." *Econometrica* 54(3):607–622.

### Bibliography II

- Erosa, Andres and Martin Gervais. 2002. "Optimal Taxation in Life-Cycle Economies." *Journal of Economic Theory* 105:338–369.
- Fullerton, D. and G. E. Metcalf. 2002. "Tax incidence." *Handbook of Public Economics* 4:1787–1872.
- Gourio, Francios and Jianjun Miao. 2010. "Firm Heterogeneity and the Long-run Effects of Dividend Tax Reform." *American Economic Journal: Macroeconomics* 2:1:131–168.
- Gourio, Francios and Jianjun Miao. 2011. "Transitional dynamics of dividend and capital gains tax cuts." *Review of Economic Dynamics* 14:368–383.
- Harberger, Arnold. 1962. "The incidence of the corporation income tax." *The Journal of Political Economy* 70 (3):215–240.
- Hubbard, Glenn R. and Kenneth L. Judd. 1986. "Liquidity Constraints, Fiscal Policy, and Consumption." *Brookings Papers on Economic Activity* pp. 1–50.

### Bibliography III

- Imrohoroglu, Selahattin. 1998. "A Quantitative Analysis of Capital Income Taxation." *International Economic Review* 39:307–328.
- Judd, Kenneth L. 1985. "Redistributive Taxation in a Simple Perfect Foresight Model." *Journal of Public Economics* 28:59–83.
- McGrattan, Ellen and Edward Prescott. 2005. "Taxes, Regulations and the Value of U.S. Corporations." Federal Reserve Bank of Minneapolis, Research Department Staff Report.
- Sachs, Dominik, Aleh Tsyvinski and Nicolas Werquin. 2019. "Nonlinear Tax Incidence and Optimal Taxation in General Equilibrium." *Working Paper*.
- Saez, Emmanuel and Gabriel Zucman. 2019. "Clarifying Distributional Tax Incidence: Who Pays Current Taxes vs. Tax Reform Analysis." *Working Paper*.
- Santoro, Marika and Chao Wei. 2011. "Taxation, Investment and Asset Pricing." *Review of Economic Dynamics* 14(3):443–454.

### Bibliography IV

Tran, Chung and Sebastian Wende. 2017. "On the Excess Burden of Taxation in an Overlapping Generations Economy." *ANU Working Paper*.

Wills, Daniel and Gustavo Camilo. 2017. "Taxing Firms Facing Financial Frictions." Working Paper .

### Competitive equilibrium I

Given the transition probability matrices and the exogeneous government policies, a competitive equilibrium is a collection of sequences of distributions of household decisions, aggregate capital stocks of physical and human capital, and market prices such that

- ► Households solve the consumer problem;
- Firms solve the firm problem and the F.O.Cs of firms hold;
- All markets clear and the general budget clear;
- The distribution is stationary;
- ► The aggregate resource constraint is given by

$$C_t + I_t + \Psi_t = Y_t$$

where

$$Y = \int y(k, z; w) \mu(dk, dz), \qquad L = \int I(k, z; w) \mu(dk, dz)$$

### Competitive equilibrium II

$$I = \int i(k, z; w) \mu(dk, dz), \qquad \Psi = \int \frac{\psi i(k, z; w)^2}{2k} \mu(dk, dz)$$
$$p^T = \int p(k, z; w) \mu(dk, dz), \qquad d^T = \int d(k, z; w) \mu(dk, dz)$$
$$s^T = \int s(k, z; w) \mu(dk, dz)$$

Dividend tax (DT)

## Dividend tax increase

### Dividend tax: Output



### Dividend tax: Capital by level of firm productivity



### Dividend tax: Labor income



### Dividend tax: Assets



### Dividend tax: Revenue



### Dividend tax: Welfare change

